
Architecture
Logicielle
Agile
v.2

Sandy Ingram

Spring 2024 – Micro 371
• Architecture

Software

▪ L'ingénierie Logicielle:
• Définition (avec un peu d’histoire)
• Le DevOps
• L’agilité

▪ Approche de développement “Waterfall”
▪ Ingénierie et Architecture Logiciel Agile

• Origine
• Définition
• “Agile Manifesto”: définition et principes

▪ Exemples de méthodologies agile:
• XP pour extreme programming
• Kanban
• (Focus sur) SCRUM

▪ Synthèse et limitations
▪ Méthodologie agile dans la pratique:

• Planification agile avec outils gitlab.

Plan du cours
A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

/M
É

TH
O

D
O

LO
G

IE
 A

G
IL

E

S
an

dy
 In

gr
am

2

“When I first came up with the term, no one had heard of it

before, at least in our world. It was an ongoing joke for a

long time. They liked to kid me about my radical ideas. It

was a memorable day when one of the most respected

hardware gurus explained to everyone in a meeting that he

agreed with me that the process of building software

should also be considered an engineering discipline, just like

with hardware. Not because of his acceptance of the new

'term' per se, but because we had earned his and the

acceptance of the others in the room as being in an

engineering field in its own right” (Margaret Hamilton).

L’ingénieurie
Logicielle

S
an

dy
 In

gr
am

3

A Google tribute to Margaret Hamilton (Software Team
Lead for Apollo mission flights.)

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

https://blog.google/products/maps/margaret-hamilton-apollo-11-tribute/

L’Ingénieurie
Logicielle

S
an

dy
 In

gr
am

4

Première conférences : 1968 et 1969 sponsorisés par le comité
scientifique de l’OTAN. Personnes clés:

Douglas Ross
(Organisateur)

Anthony Oettinger: aussi
crédité pour la première
utilisation de “Software
Engineering” en 1968.A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

/M
É

TH
O

D
O

LO
G

IE
 A

G
IL

E

1990s: première utilisation du mot “architecture” dans un
livre de développement logiciel.

https://dl.acm.org/doi/pdf/10.1145/800025.1198378
https://en.wikipedia.org/wiki/Anthony_Oettinger

DevOps Agilité
(Le focus de ce
cours)

L’ingénieurie
Logicielle : 2 pilliers

5

- Selon le rapport de 2013 “State of DevOps” de Puppet
Labs, les entreprises pratiquant le DevOps déploient 30 fois
que leurs compétiteurs et moins de 50% de leurs
déploiements échouent.

S
an

dy
 In

gr
am

6L’ingénieurie Logicielle :
2 pilliers

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

Selon le rapport de 2013 “State of DevOps” de Puppet
Labs, les entreprises pratiquant le DevOps déploient 30
fois que leurs compétiteurs et moins de 50% de leurs
déploiements échouent.

DevOps Agilité

Ce que nous traiterons
aujourd’hui

7A l’origine :
Le Lean manufactoring

▪ Introduit dans les années 80s, le terme “Lean” est mis en avant
dans les années 90s, avec le livre “The Machine That Changed the
World” pour décrire l’approche efficiente et “anti-gaspillage” de
Toyota Production Systems (TPS) se caractérisant par:

• un flux de production continu
• amélioration continue (Kaizen)
• un processus de qualité intégré
• L’implication active des employés
• Une production “JIT” (“just-in-time”)
• La flexibilité et adaptabilité au changement
• Une minimisation des stocks et des délais de production

.

https://www.linkedin.com/pulse/tps-lean-fundamentals-special-offer-kaizen-
made-easy/?trk=public_post_main-feed-card_feed-article-content

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

https://www.orellfuessli.ch/shop/home/artikeldetails/A1002632539?ProvID=10917751&gad_source=1&gclid=Cj0KCQiAoKeuBhCoARIsAB4WxteQzXowzE-BU-We9mdltiui5v-IaCSy1HhwWtZhMY2cWdxOisfe_NoaAvBNEALw_wcB
https://www.orellfuessli.ch/shop/home/artikeldetails/A1002632539?ProvID=10917751&gad_source=1&gclid=Cj0KCQiAoKeuBhCoARIsAB4WxteQzXowzE-BU-We9mdltiui5v-IaCSy1HhwWtZhMY2cWdxOisfe_NoaAvBNEALw_wcB
https://www.linkedin.com/pulse/tps-lean-fundamentals-special-offer-kaizen-made-easy/?trk=public_post_main-feed-card_feed-article-content
https://www.linkedin.com/pulse/tps-lean-fundamentals-special-offer-kaizen-made-easy/?trk=public_post_main-feed-card_feed-article-content

S
an

dy
 In

gr
am

8Approche de
développement Agile

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Ken Schwaber and Jeff Sutherland proposent le “framework”
SCRUM, publié en 1995.

▪ Après avoir adopté le modèle “waterfall”, the Département de
défense aux USAs dans son standard (DOD- STD-2167) décrit
les processus itératifs dans les années 1990s.

▪ 17 “practiciens” de développement de logiciel réunis en 2001 pour
discuter des meilleures pratiques de développement logiciels,
publient l’Agile Manifesto. Donc SCRUM, XP, ont précédé à ce
document qui en a fait un bilan.

https://agilemanifesto.org/

S
an

dy
 in

gr
am

9Le problème avec le
modèle “WaterFall”

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

La conception puis la
réalisation du projet, sont
réalisées de manière à tous
les aspects du projet, en une
fois; le projet est abordé
dans sa totalité.

S
an

dy
 In

gr
am

10Le problème avec le
modèle “WaterFall”

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

Les exigences et spécifications sont figées
longtemps au risque de devenir obsolètes

Très souvent, à ce stade, il reste
peu de temps pour les tests

Long!

S
an

dy
 In

gr
am

11Approches Agiles
A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

/M
É

TH
O

D
O

LO
G

IE
 A

G
IL

E

http://www.nmerge.com/agile-marketing-lightweight-or-a-fuller-approach/agile/

http://www.nmerge.com/agile-marketing-lightweight-or-a-fuller-approach/agile/

S
an

dy
 In

gr
am

12“Agile Manifesto”
 4 valeurs fondamentales

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

S
an

dy
 In

gr
am

13“Agile Manifesto”
 12 principes

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

La priorité absolue est la satisfaction du
client grâce à la livraison rapide et
continue de logiciels fonctionnels et utiles.

Coopération quotidienne entre
développeurs et porteurs du
projet (business)

Intégration précoce et continue, publications
fréquentes*

Rythme de développement soutenable

Attention permanente à l'excellence technique
(bonne conception de l'architecture,
automatisation des tâches répétitives,
minimisation de la "dette" technique).

Simplicité

Un logiciel fonctionnel est le premier
critère de réussite.

Acceptation des changements des
requirements “même tardifs”

Construire des projets autour de personnes
motivées

Des équipes “autonomes” au niveau de
leur organisation

Rien n'équivaut à une conversation en face à face. Rétrospectives et adaptation régulières
(du processus)

* Pour le permettre viser l’automatisation de tests, l’intégration et le déploiement continu (CI/CD)

S
an

dy
 In

gr
am

14La Méthodologie
Agile

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

https://medium.com/@maruvada.krishna/product-development-using-agile-methodology-81b39c29f250

https://medium.com/%40maruvada.krishna/product-development-using-agile-methodology-81b39c29f250

S
an

dy
 In

gr
am

15Agile n’est pas équivalent
à CowBoy Coding!

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

https://www.cs.utexas.edu/blog/cowboy-rides-away-now

- Point commun avec l’approche
agile: autonomie, la “liberté” de
déployer en production sans
processus strict.

- Différence: le principe de se
coordonner régulièrement avec
les porteurs du projet pour bien
identifier et prioriser les
business, et définir les livrables
(“Definition of done”).

http://www.cs.utexas.edu/blog/cowboy-rides-away-now

S
an

dy
 In

gr
am

16Aperçu de quelques
approches agiles: Kanban

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Visualisation du “workflow” sur un tableau de bord.
▪ 1 card = 1 user story (mais qu’est ce qu’un user story? …).
▪ WIP work in progress limit = nombre limité de tâche par colonne.
▪ Minimisation du temps entre les points de “commitment” (engagement) et “completion”

(complétion).
▪ Comme outil, on peut utiliser:

• un tableau physique avec des “postits”
• ou un logiciel comme Trello, Gitlab board …

-

S
an

dy
 In

gr
am

17Aperçu de quelques
approches agiles: Kanban

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

-▪

▪ Comme outil, on peut utiliser: un tableau physique avec
des “postits” ou un logiciel comme Trello, Gitlab board
…

(Issue) Board de gitlab pouvant être utilisé comme Kanban board

S
an

dy
 In

gr
am

18Aperçu de quelques
approches agiles: XP

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

-▪

▪ XP pour “extreme programming”
▪ Logiciel fonctionnel prime sur une documentation

exhaustive, et “releases” régulières.
▪ Focus sur techniques de programmation en vue d’un

logiciel sans “bug”: “pair-programming”, “refactoring”,
conventions de codage.

▪ Est-ce que XP respecte les 12 principes agiles de
l’Agile Manifesto?

S
an

dy
 In

gr
am

19Aperçu de quelques
approches agiles: SCRUM

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

-▪

▪ Comme XP, SCRUM se concentre sur le développement
d’un logiciel fonctionnel et des “releases” fréquents
(prototypage rapide) plutôt qu’une documentation
exhaustive.

▪ Alors que XP se concentre sur un logiciel “sans bug” avec
des techniques de programmation, SCRUM met le focus
sur la “livraison” d’un produit fonctionnel adapté aux
besoins avec un processus de développement itératifs.

▪ Donc SCRUM est plus focalisés sur le cycle de vie d’un
projet et sa gestion.

S
an

dy
 In

gr
am

20Aperçu de quelques
approches agiles: SCRUM

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

-▪

AUCUN changement n'est permis pendant le sprint, mais le
sprint peut être annulé s'il devient obsolète.

S
an

dy
 In

gr
am

21Les Meetings SCRUM
A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

/M
É

TH
O

D
O

LO
G

IE
 A

G
IL

E

▪

▪ Sprint planning: limité à 8 heures pour un sprint de 4 semaines.
▪ Daily Scrum: <= 15 minutes pour discuter de ce qui a été fait la

veille, ce qui est prévu pour le jour-même, et s’il y a des
“bottlenecks” ou défis spécifiques.

▪ Sprint Review Meeting: à la fin de chaque sprint.
▪ Sprint Retrospective: à la fin de chaque sprint (limité à 3 heures

pour un sprint de 4 semaines).
▪ Product Backlog refinement meeting: séance d’affinage du

backlog.

S
an

dy
 In

gr
am

22Le SCRUM Team
A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

/M
É

TH
O

D
O

LO
G

IE
 A

G
IL

E

▪

S
an

dy
 In

gr
am

23

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Product Owner (PO): identifie les besoins “business”, priorise les
items du backlog.

▪ Développeurs: 7+/-2, multidisciplinaires (par ex. pas de silos
entre “testeurs” et “développeurs”, auto-organisés

▪ Scrum Master: fait le pont entre le PO et les développeurs, and
veille sur le respect des “règles” de SCRUM (par exemple la
durée d’un daily meeting).

▪ Les SCRUMS meetings concernent tout le SCRUM Team.

Le SCRUM Team

S
an

dy
 In

gr
am

24

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Product Owner (PO): identifie les besoins “business”, priorise les
items du backlog.

▪ Développeurs: 7+/-2, multidisciplinaires (par ex. pas de silos
entre “testeurs” et “développeurs”, auto-organisés

▪ Scrum Master: fait le pont entre le PO et les développeurs, and
veille sur le respect des “règles” de SCRUM (par exemple la
durée d’un daily meeting).

Le SCRUM Team

S
an

dy
 In

gr
am

25La séance de
“Sprint Planning”

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Peut se faire avec des cartes “poker” pour estimer les “story”
points par user story

▪ Les estimations se font en terme de durée ou complexité.
▪ lorsque les estimations divergent, on justifie le choix en discutant

des tâches pensées et leurs complexités.
▪ Mais attention ni les “user stories” ni les cartes “poker” ne font

partie du guide officiel de la méthodologie “SCRUM”.

S
an

dy
 In

gr
am

26

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Les user stories sont divisées en “tâches” à estimer.
▪ Les story points représentent soit des: jours idéaux, des heures,

ou des “timeless” story points.
▪ Les Timeless story points estiment la complexité d’une tâche

relativement à une autre. C’est moins intuitif qu’une estimation
temporelle mais permettent de se focaliser sur la “shipping value”
plutôt que le temps de livraison.

▪ Les tâches individuelles trop complexes doivent être
décomposées en sous-tâches pour faciliter l’estimation.

“Sprint Planning”: estimation des
users stories en story points

S
an

dy
 In

gr
am

27

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Chaque développeur fait une estimation personnelle.
▪ Les estimations sont ouvertes simultanément et comparées.
▪ Les discussions des estimations divergentes permet une

compréhension mutuelle des tâches (qu’ai-je oublié? qu’ai-je
sous-estimé ou sur-estimé? y-a-t-il un moyen plus simple à le
faire? pourquoi la tâche est si complexe).

▪ Les estimations sont faites avec des séries, séquences de
nombres non-linéaires (Fibonacci, Power of two)

▪ https://planningpokeronline.com/

“Sprint Planning”: estimation
avec des cartes “poker”

https://planningpokeronline.com/

S
an

dy
 In

gr
am

28

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Pourquoi utilise-t-on des séries
non-linéaires pour les estimations?

https://en.wikipedia.org/wiki/Weber%E2%
80%93Fechner_law

Le changement de 10 to 20 est
plus simple à percevoir que celui
de 110 to 120.

La perception du changement est
influencée par le rapport entre la
valeur de départ et l’incrément.
Weber’s-Fechsner law).

S
an

dy
 In

gr
am

29

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ “Retrospective Meeting”:
La vélocité

Les “sprint review meetings” permettent d’identifier la “vélocité”
d’une équipe pour améliorer les estimations.

Vélocité moyenne =

avec n: le nombre de sprints
et totalStoryPoints_i le nombre de of storypoints au sprint I

https://www.agile-academy.com/en/scrum-master/velocity-definition-and-how-you-can-calculate-it/

http://www.agile-academy.com/en/scrum-master/velocity-definition-and-how-you-can-calculate-it/

S
an

dy
 In

gr
am

30

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Planification Agile

“As a [role], I [want to], [so that].”

Action Benefit

https://www.visual-paradigm.com/scrum/theme-epic-user-story-task/

- Le PIB (Product Item Backlog) est découpé en epics, “users stories”, et tâches
techniques.

- Un epic est accompli en une ou plusieurs itérations.
- Avec SCRUM en particulier:

- On parle de “sprint” (au lieu d’itérations).
- Dans le SCRUM guide, on parle évidemment de PIB.
- mais SCRUM n’impose aucune utilisation de “user stories”.

http://www.visual-paradigm.com/scrum/theme-epic-user-story-task/

31

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Sprint Burn Down
Charts

S
an

dy
 In

gr
am

Source: https://www.atlassian.com/agile/tutorials/burndown-charts

 Remaining
Le travail total restant (story points
ou jours idéaux ou heures selon le
type d’estimation choisi).

Ligne de référence
Estimation linéaire basée sur le
temps restant

Idéalement, on aimerait que la ligne rouge pense en dessous de la grise

http://www.atlassian.com/agile/tutorials/burndown-charts

32

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Epic Burn Down
Charts

S
an

dy
 In

gr
am

 1
2

1

2

3

1: Epic choisi
2: Nombre de story points ajoutés à l’epic par sprint (après le planning du sprint en question).
3: Le nombre de story points restant pour l’epic choisi.
4: Le nombre de story points accompli par sprint for l’epic choisi.
5: (Prédictif) Nombre de sprints restant en fonction de la vélocité de l’équipe.

Source: https://www.atlassian.com/agile/tutorials/burndown-charts

2
2
3
2

5
2

2
4

http://www.atlassian.com/agile/tutorials/burndown-charts

33

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Utilisation de Gitlab
pour une planification agile

S
an

dy
 In

gr
am

1

2

3

2
2
3
2

5
2

2
4

https://about.gitlab.com/blog/2018/03/05/gitlab-for-agile-software-development/

34

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪ Représentation d’une “user
story” avec un gitlab “issue”

S
an

dy
 In

gr
am

1

2

3

2
2
3
2

5
2

2
4

“As a [role], I [want to], [so that].”

Action Benefit

S
an

dy
 In

gr
am

35

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Développement itératif: améliorations incrémentales en gardant le focus
sur la sécurité et la fiabilité du système embarqué.

▪ Fléxibilité (se rappeler de Lean) avec le changement de régulations, des
besoins du marché.

▪ Transparence et coordination accrue au sein d’équipes
multidisciplinaires et auto-organisés constitués d’experts du domaine,
développeurs de logiciels, de hardware, assurance qualités (daily
SCRUM, sprint planning)

▪ Priorisation des “items” dans le PIB en fonction de la valeur “business”
(e.g. ceux critiques pour la sécurité)

▪ Amélioration continue (sprint retrospective).

Applications et systèmes embarqués
“SAFE”: Bénéfices de SCRUM

S
an

dy
 In

gr
am

36

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Processus de test rigoureux
• ceci est cohérent avec le principe agile de logiciel fonctionnel mais

nécessiterait des cycles de développements plus longs.
• Intégration de pratiques DevOps.

▪ Rien de spécifique dans le guide SCRUM par rapport à une
méthodologie de gestion des risques.

▪ Au delà du côté fonctionnel, il y a un besoin de documentation plus
“exhaustive” (conformité à des standards ISO, certifications, et
réglementations spécifiques au domaine: aéorospace, médical,
automobile).

Applications et systèmes embarqués
“SAFE”: Limites et adaptations de SCRUM

37S4S: Scrum for Safety

https://link.springer.com/article/10.1007/s11219-022-09593-2

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

https://link.springer.com/article/10.1007/s11219-022-09593-2

38S4S: Scrum for Safety

https://link.springer.com/article/10.1007/s11219-022-09593-2

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

https://link.springer.com/article/10.1007/s11219-022-09593-2

S
an

dy
 In

gr
am

39

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Deux piliers du génie logiciel: DevOps et méthodologie agile.
▪ Agile Manifesto:

• 4 valeurs principales et 12 principes
• des méthodologies agiles complémentaires: Kanban, XP,

SCRUM
• SCRUM en détail: Scrum team, 5 meetings, planification
• Applicable aux applications “SAFE” et systèmes embarqués

en complément avec d’autres approches.

Synthèse

S
an

dy
 In

gr
am

41

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Constituer des groupes
• les groupes du cours systèmes embarqués s’annoncent et cherchent

d’autres membres (feuille excel à remplir en live).
▪ Créer un “groupe” privé gitlab : 25_softweng_xxx_yyy_zzz avec la série

xxx_yyy_… représentant les 3 premières du nom de famille de chaque
membre du groupe

▪ Nous y inviter en tant que “maintainer”
▪ Repérer le git “issue board” sous plan.

Passons à la pratique

https://docs.google.com/spreadsheets/d/1UYobJh_ck77xVuBgLvEjmh7JYLl74BE-UAbf6OVB7YI/edit?usp=sharing

S
an

dy
 In

gr
am

42

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ Agile Manifesto: https://agilemanifesto.org/history.html
▪ Official Scrum Guide: https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100 (Web version:

https://scrumguides.org/scrum-guide.html),
▪ Planning Agile Development with gitlab: https://about.gitlab.com/blog/2018/03/05/gitlab-for-agile-software-development/
▪ Sprint Planning: https://www.scrum.org/resources/what-is-sprint-planning
▪ Scrum Metrics (Velocity, Capacity, Burndown charts): https://www.atlassian.com/agile/scrum/scrum-metrics (not inherent or

imposed by Scrum).
▪ Scrum and Epic Burn down charts: https://www.atlassian.com/agile/tutorials/burndown-charts
▪ Estimation with storypoints: https://www.atlassian.com/agile/project-management/estimation
▪ Scrum Glossary: https://www.scrum.org/Resources/Scrum-Glossary
▪ StoryPoints revisited https://ronjeffries.com/articles/019-01ff/story-points/Index.html
▪ Cumulative Flow Diagram: https://knowledgebase.kanbanize.com/hc/en-us/articles/360015034420-The-Cumulative-

Flow-Diagram-CFD-
▪ Scrum for Safety: https://link.springer.com/article/10.1007/s11219-022-09593-2

Références

https://agilemanifesto.org/history.html
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom%3D100
https://scrumguides.org/scrum-guide.html
https://about.gitlab.com/blog/2018/03/05/gitlab-for-agile-software-development/
https://www.scrum.org/resources/what-is-sprint-planning
https://www.atlassian.com/agile/scrum/scrum-metrics
https://www.atlassian.com/agile/tutorials/burndown-charts
https://www.atlassian.com/agile/project-management/estimation
https://www.scrum.org/Resources/Scrum-Glossary
https://ronjeffries.com/articles/019-01ff/story-points/Index.html
https://knowledgebase.kanbanize.com/hc/en-us/articles/360015034420-The-Cumulative-Flow-Diagram-CFD-
https://knowledgebase.kanbanize.com/hc/en-us/articles/360015034420-The-Cumulative-Flow-Diagram-CFD-
https://link.springer.com/article/10.1007/s11219-022-09593-2

S
an

dy
 In

gr
am

43

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E
/M

É
TH

O
D

O
LO

G
IE

 A
G

IL
E

▪

▪ https://www.puppet.com/system/files/2013-State-of-Devops-Report.pdf
▪ 2013 State of Devops by Puppet Labs https://www.puppet.com/system/files/2013-State-of-Devops-Report.pdf
▪ History of Agile development: https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-

agile-development
▪ Iterative Software Development: https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-

larman-and-basili-ieee-computer.pdf
▪ Historical Roots of Agile Methods: Where did “Agile Thinking” Come from? https://link.springer.com/

chapter/10.1007/978-3-540-68255-4_10
▪ ScrumBan vs Scrum vs Kanban (nice comparative table!) : https://ora.pm/blog/scrum-vs-kanban-vs-scrumban/ (PS: ”The

product owner push and assigns tasks to team members” => not 100% correct).
▪ ScrumBan https://www.productplan.com/glossary/scrumban/

Lecture Optionnelle

https://www.puppet.com/system/files/2013-State-of-Devops-Report.pdf
https://www.puppet.com/system/files/2013-State-of-Devops-Report.pdf
https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-agile-development
https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-agile-development
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://link.springer.com/chapter/10.1007/978-3-540-68255-4_10
https://link.springer.com/chapter/10.1007/978-3-540-68255-4_10
https://ora.pm/blog/scrum-vs-kanban-vs-scrumban/
https://www.productplan.com/glossary/scrumban/

